

THE ENGLISH COLLEGE IN PRAGUE

Mathematics Entrance Examination Practice set (A)

Formula List

~

For the equation
$$ax^2 + bx + c = 0$$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Curved surface area, A , of cylinder of radius r , height h . $A = 2\pi rh$
Curved surface area, A , of cone of radius r , sloping edge l . $A = \pi rl$
Curved surface area, A , of sphere of radius r . $A = 4\pi r^2$
Volume, V , of pyramid, base area A , height h . $V = \frac{1}{3}Ah$
Volume, V , of cylinder of radius r , height h . $V = \pi r^2 h$
Volume, V , of cone of radius r , height h . $V = \frac{1}{3}\pi r^2 h$
Volume, V , of sphere of radius r . $V = \frac{4}{3}\pi r^3$
 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
 $a^2 = b^2 + c^2 - 2bc \cos A$
Area $= \frac{1}{2}bc \sin A$

a

<u>Questions</u>

Q1.

(a) Find the value of $12 \div (2 - 5)$

(b) Find the value of 6^4	(1)
(c) Write down the prime number whose value is nearest to 33	(1)
(d) Find the cube root of 343	(1)

(Total for question = 4 marks)

Q2.

The perimeter of a triangle is 90 cm. The lengths of the sides of the triangle are in the ratios 3 : 5 : 7. Work out the length of the longest side of the triangle.

..... cm

(Total for question = 5 marks)

Q3.

In January 2007 the population of Canada was 32 million. 7 million of these Canadian people spoke French as their first language.

(a) Express 7 million as a percentage of 32 million. Give your answer correct to 1 decimal place.

.....%

Between January 2007 and January 2009 the population of Canada increased by 15%.

(b) Increase 32 million by 15%.

Give your answer correct to the nearest million.

..... million (2)

(c) In one year the population of a small island increased by 20% to 624. What was the population before the increase?

(2)

(Total for question is 6 marks)

Q4. Simplify the following surd showing full working.

$$\sqrt{50} + 2\sqrt{32}$$

(2)

(b) Show that $(4 + \sqrt{12})(5 - \sqrt{3}) = 14 + 6\sqrt{3}$ Show each stage of your working clearly.

(3)

(Total for question = 5 marks)

Q5. (a) Factorise 14*x* - 35

(1) (b) Expand and simplify 3(2c - 5) - 2(c - 4)(c) Simplify $(4e^3)^2$ (d) Expand and simplify (a + 5)(2a - 1)(1)

(2)

(Total for question = 7 marks)

Q6.

Given that *y* is positive, make *y* the subject of $y = \sqrt{ay^2 + n}$

Show clear algebraic working.

y =

(Total for Question is 5 marks)

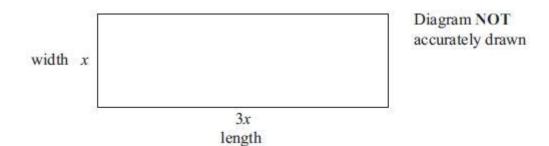
Q7.

(a) Factorise $4x^2 - 1$

.....

(2)

(b) Solve $\frac{4}{2x+1} + \frac{1}{4x^2 - 1} = 3$


Show clear algebraic working.

(4)

(Total for question = 6 marks)

The diagram shows a rectangular playground of width *x* metres and length 3*x* metres.

The playground is extended, by adding 10 metres to its width and 20 metres to its length, to form a larger rectangular playground. The area of the larger rectangular playground is double the area of the original playground.

(a) Show that $3x^2 - 50x - 200 = 0$

(b) Calculate the area of the original playground.

.....m² (5)

(Total for question = 8 marks)

(3)

Q8.

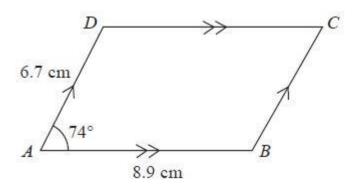


Diagram NOT accurately drawn

ABCD is a parallelogram. AB = 8.9 cm. AD = 6.7 cm. Angle $BAD = 74^{\circ}$

Calculate the area of parallelogram *ABCD*. Give your answer correct to 3 significant figures.

..... cm²

(Total for Question is 3 marks)

Q10.

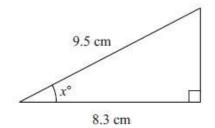
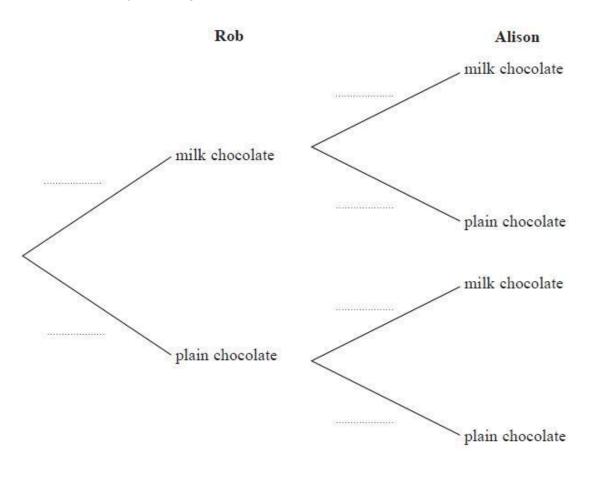


Diagram NOT accurately drawn

Work out the value of x. Give your answer correct to 1 decimal place.


x =

(Total for question = 3 marks)

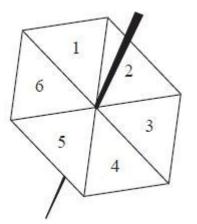
Q11.

There are 6 milk chocolates and 4 plain chocolates in a box. Rob takes at random a chocolate from the box and eats it. Then Alison takes at random a chocolate from the box and eats it.

(a) Complete the probability tree diagram.

(b) Work out the probability that there are now exactly 3 plain chocolates in the box.

(3)


(Total for question = 6 marks)

(3)

Q12.

Becky has a biased 6-sided spinner. She spins the spinner 25 times. She records the score for each spin. The table shows information about her scores.

Score	Frequency
1	9
2	6
3	3
4	2
5	1
6	4

(a) Find her median score.

(b) Work out her mean score.

(3)

.....

(2)

(Total for question = 5 marks)

Q13.

Three positive whole numbers are all different. The numbers have a median of 8 and a mean of 6 Find the three numbers.

(Total for question = 2 marks)

.....

Mark Scheme (questions are out of order)

Q1.

Question	Working	Answer	Mark	Notes
(a)		- 4	1	B1
(b)		1296	1	B1
(c)		31	1	B1
(d)		7	1	B1
				Total 4 marks

Q2.

Question Number	Working	Answer	Mark	Notes
	3+5+7 or 15		3	M 15 may be 1 denominator of fraction or coefficient in an equation such as 15x = 90
	90 ÷ (3+5+7) or 90 ÷ "15" or 6 or 7/15 oe			M dep 1
		42		A1 Also award for 18 : 30 : 42
				Total 3 mark

Q3.

Question	Working	Answer	Mark	Notes
(a)	7/32 x 100 oe	21.9	2	M1 A1 (21.875) accept awrt to 21.9
(b)	4/100 x 32 (=1.28) or 4/100 x 32000000 (=1280000) 32 + "1.28" or 32000000 + "1280000")	33	3	M1 M2 for 32 x 1.04 oe or 32000000 x 1.04 oe M1 (dep) A1 (33.28) accept 33.3, 3300000, 33300000, 33280000
				Total 5 marks

Q	Working	Answer	Mark		Notes
(a)	$5\sqrt{2} + 8\sqrt{2}$				
(b)	$= 13\sqrt{2}$ 20-4 $\sqrt{3}$ +5 $\sqrt{12}$ - $\sqrt{3}\sqrt{12}$ or 20-4 $\sqrt{3}$ +5 $\sqrt{12}$ - $\sqrt{36}$ or 20-4 $\sqrt{3}$ +5 $\sqrt{12}$ -6		3	M1	for at least 3 correct terms with correct signs or all 4 terms correct without signs
	$\sqrt{12} = \sqrt{4 \times 3}$ or $\sqrt{12} = 2\sqrt{3}$ or $5\sqrt{12} = 5\sqrt{4 \times 3}$ or $5\sqrt{12} = 10\sqrt{3}$			M1	NB. This may be seen before the expansion of the brackets
		show		A1	dep on both method marks for deriving the given answer
					Total 5 marks

Q4.

Question	Working	Answer	Mark		Notes
	$y^2 = ay^2 + n$		5	M1	
	$y^{2} - ay^{2} = n \text{ or}$ $1 = a + \frac{n}{y^{2}} \text{ or } 1 - a = \frac{n}{y^{2}}$			M1	isolate terms in y^2 or divide through by y^2
	$y^2(1-a) = n$			M1	take out y^2 as a common factor
	$y^2 = \frac{n}{1-a}$			M1	y^2 as subject
		$\sqrt{\frac{n}{1-a}}$		A1	accept $\sqrt{\frac{-n}{a-1}}$
					Total 5 marks

Q8.

Q	Working	Answer	Mark	Notes
а			2	M1 $(2x\pm 1)(2x\pm 1)$
		(2x-1)(2x+1)		A1 cao
b	$\frac{4(2x-1)}{(2x-1)(2x+1)} + \frac{1}{4x^2-1} [=3]$ or		4	M1 multiply all terms by $(4x^2 - 1)$ or
	$\frac{4(4x^2-1)}{(2x+1)(4x^2-1)} + \frac{(2x+1)}{(2x+1)(4x^2-1)} [=3]$ or			correct equation with fractions with a common denominator
	$\frac{4(4x^2-1)}{2x+1} + \frac{1(4x^2-1)}{4x^2-1} = 3(4x^2-1)$ or			NB $(4x^2 - 1)$ may be factorised throughout
	$4(4x^2-1) + (2x+1) = 3(2x+1)(4x^2-1)$			
	$4(2x-1)+1=3(4x^2-1)$ oe or			M1 correct equation with no fractions
	$4(4x^2 - 1) + 2x + 1 = 3(2x + 1)(4x^2 - 1)$ oe			
	$12x^2 - 8x = 0 \text{ or } 8x - 12x^2 = 0 \text{ or}$			M1 correct simplified equation with all terms on one side
	$24x^3 - 4x^2 - 8x = 0$ or $8x + 4x^2 - 24x^3 = 0$			
		$0, \frac{2}{3}$		A1 dep on M2
				Total 6 marks

Q5.

Question	Working	Answer	Mark	Notes
(a)		7(2x-5)	1	B1
(b)	6c - 15 - 2c + 8		2	M1 Any three terms correct.
		4c - 7	2	A1
(c)		16 <i>e</i> ⁶		B2 B1 for 16 or e^6 as part of a product
			2	or
				B1 for $4^2 \times e^{2 \times 3}$
(d)	$2a^2 + 10a - a - 5$			M1 Any three terms correct or
			2	$2a^2 + 9a + \dots$ or $\dots + 9a - 5$
		$2a^2 + 9a - 5$		A1
				Total 7 marks

Q9.

Q	Working	Answer	Mark	Notes
(a)	2 x 3 x x x = (x + 10)(3x + 20) or 6x2 = (x + 10)(3x + 20) 6x2 = 3x2 + 50x + 200 6x2 = 3x2 + 50x + 200		3	M2 If not M2 then M1 for 2 x $3x x x$ or $2 x 3x^2$ or $6x^2$ or (x + 10)(3x + 20) A1 Dependent on at least M1
(b)	(3x +10)(x - 20) (=0) Marks can be awarded in b) if seen in a) 20 x 3 x 20	x =20 1200	5	M2 or $x = \frac{50 \pm \sqrt{2500 + 2400}}{6}$ If not M2 then M1 for $(3x \pm 10)(x \pm 20)$ or $x = \frac{-50 \pm \sqrt{-50^2 - 4x3x - 200}}{2 \times 3}$ condone 1 sign error A1 dep on M1 in b). Ignore negative root (-3.3 rec) M1 A1 dep on 1 st M1 in b)
				Total 8 marks

Q10.

cos	$("x") = \frac{8.3}{9.5} (=0.87)$ "=) cos ⁻¹ ($\frac{8.3}{9.5}$)		3	M1 M1	cos must be selected for use in trig ratio NOT Cosine Rule	or M2 for sin and $\frac{\sqrt{"21.36"}}{9.5}$ following correct Pythagoras or M2 for tan and $\frac{\sqrt{"21.36"}}{8.3}$ following correct Pythagoras or correct Pythag and then correct use of sine or cosine rule with "21.36"
		29.1		A1	for ans rou (29.1103	nding to 29.1 .)
						Total 3 marks

Q11.

The correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question		Answer	Marks		Comments
(a)	Probabilities on branches correct.		3	B1	for $\frac{6}{10}, \frac{4}{10}$ oe on LH branches
				B1	for $\frac{5}{9}, \frac{4}{9}$ oe on top RH
		645		D1	branches for $\frac{6}{9}, \frac{3}{9}$ oe on bottom RH
		$\frac{6}{10}, \frac{4}{10}, \frac{5}{9},$		B1	
		$\frac{4}{9}, \frac{6}{9}, \frac{3}{9}$			branches Decimals given on the 2 nd set of branches to be to at least
					2dp (truncated or rounded).
(b)	$\frac{6}{10} \times \frac{4}{9} \text{ or } \frac{4}{10} \times \frac{6}{9}$ or ft from their		3	M1	or $\frac{6}{10} \times \frac{5}{9} + \frac{4}{10} \times \frac{3}{9} \left(= \frac{42}{90} \right)$
	tree diagram $\frac{6}{10} \times \frac{4}{9} + \frac{4}{10} \times \frac{6}{9}$ or ft from their			M1dep	or 1-" 42 "
	tree diagram	$\frac{48}{90}$ oe		A1	Allow 0.53(33)
				seen at t	all 4 probability products are he ends of the branches on the gram or in lists in the working
				space for in (b) if	r (b), marks can only be awarded it is clear which product(s) they uding to use.
					Total 6 marks

Q12.

The correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Marks	Comments
(a)	(25 + 1) ÷ 2 or 13 or 12.5		2	M1 or listing scores and clear attempt to find middle value
		2		A1
(b)	$1 \times 9 + 2 \times 6 + 3 \times 3 + 4 \times 2 + 5 \times 1 + 4 \times 6$ oe (=67)			M1 sight of at least 4 products and intention to add
	$\frac{9+12+9+8+5+24}{25}$ oe (allow one error in a product)		3	M1dep for division of sum of products by 25 (can be their 25 if evidence of adding frequencies)
		2.68 or $2\frac{17}{25}$		A1 $\begin{array}{c} \text{accept 2.7 or 3 if} \\ \text{preceded by } \frac{67}{25} \end{array}$
				Total 5 marks

Q13.

Q	Working	Answer	Mark	Notes
		1, 8, 9	2	B2 B1 for 2, 8, 8 or 0, 8, 10 or
				for three numbers with a mean of 6 or a median of 8 or 6×3 (=18)
				Total 2 marks