

THE ENGLISH COLLEGE IN PRAGUE

Mathematics Entrance Examination Practice set B

Formula List

For the equation	$ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Curved surface area, A, of cy	linder of radius r, height h.	$A = 2\pi r h$
Curved surface area, A, of co	ne of radius r, sloping edge l.	$A = \pi r l$
Curved surface area, A, of sp	here of radius <i>r</i> .	$A = 4\pi r^2$
Volume, <i>V</i> , of pyramid, base	area A, height h.	$V = \frac{1}{3}Ah$
Volume, V, of cylinder of radi	us r, height h.	$V = \pi r^2 h$
Volume, V, of cone of radius r	r, height <i>h</i> .	$V = \frac{1}{3}\pi r^2 h$
Volume, V, of sphere of radius	5 <i>r</i> .	$V = \frac{4}{3}\pi r^3$
\bigwedge^{A}		$\frac{a}{\sin A} = \frac{b}{\sin B} =$

Questions

Q1.

(a) Write down all the factors of 28

									(2)
(b)	Which two of the	following	number	s are prin	ne numb	ers?			
		2	9	14	15	18	23	30	
									and
									(2)
								(Total for	question = 4 marks)
Q2									
(a)	Helen's savings	increased	I from £	155 to £1	67.40				
	Work out the perc	entage in	crease i	n Helen's	savings				
									0/2
									(3)
(b)	Joe's savings inc	creased b	v 4.5%.						
His	savings are now	£125.40	5						
	What were his say	ings befo	ore the ir	crease?					
							£ =		
									(3)

(Total for Question is 6 marks)

Q3.

In the 2012 Paralympic Games, the total number of gold and silver medals won by Brazil was 35 The ratio of the number of gold medals that Brazil won to the number of silver medals that Brazil won was 3 : 2

How many silver medals were won by Brazil?

.....

(Total for Question is 2 marks)

Q4.

Show that $(6 - \sqrt{8})^2 = 44 - 24\sqrt{2}$ Show each stage of your working clearly.

(Total for question = 3 marks)

Here are three straight lines ${\bf A},\, {\bf B}$ and ${\bf C}$ drawn on a grid.

Write down an equation for each of these three straight lines.

A	 	 	
B	 	 	
C	 	 	

(Total for question = 3 marks)

Q5.

Q6.

f = 5p - 4vWork out the value of *p* when f = -22 and v = -5

p =

(Total for Question is 2 marks)

Q7.

Solve the simultaneous equations

$$5y - 4x = 8$$
$$y + x = 7$$

Show clear algebraic working.

y =

(Total for question = 3 marks)

Q8.

 $\frac{2}{5x-2} = \frac{3}{6x+1}$

Show clear algebraic working.

x =

(Total for question = 4 marks)

Q9.

 $\frac{6x^2 + x - 15}{12x^2 - 27}$ Show clear algebraic working.

.....

(Total for question = 4 marks)

Diagram NOT accurately drawn

A cylinder has a diameter of 15 cm and a height of 26 cm.

Work out the volume of the cylinder. Give your answer correct to 3 significant figures.

..... cm³

(Total for question is 3 marks)

Q11.

Diagram NOT accurately drawn

Work out the value of *x*. Give your answer correct to 2 decimal places.

x =

(Total for question = 3 marks)

Q12.

The diagram shows a sector OAPB of a circle, centre O.

Diagram NOT accurately drawn

AB is a chord of the circle. OA = OB = 6 cm.

The area of sector OAPB is 5π cm²

Calculate the perimeter of the shaded segment. Give your answer correct to 3 significant figures.

..... cm

(Total for question = 6 marks)

Diagram NOT accurately drawn

Calculate the value of x. Give your answer correct to 1 decimal place.

x =

(Total for question is 3 marks)

Q14.

A group of students take a test. The group consists of 12 boys and 8 girls. The mean mark for the boys is 18 The mean mark for the girls is 16.5 Calculate the mean mark for the whole group.

.....

(Total for question = 4 marks)

Q15.

Here are 8 dominoes.

•	• • • • • • • • •	•••	••••
•••	••••	• • • • •	• • • • • • • • •
The 8 dominoes Helima takes at r	are put in a bag. random a domino from	the bag.	
(a) Find the prob	ability that she takes a	domino with a total of	
(i) more than 5	spots,		
(ii) 6 spots,			
(iii) 7 spots,			
			(4)
Riaz takes at ran	dom a domino from the	e bag of 8 dominoes.	(4)
(b) Find the probab total of 9 spots.	ility that he takes a dor	mino with a total of 8 s	pots or a domino with a
			(2)

(Total for question is 6 marks)

(2)

Mark Scheme

Q1.

(c)	1,2,4,7,14,28	2	B2	B1 for at least 3 correct factors and none incorrect, may be seen as product pairs; ignore repeats; ignore negatives. Allow 1 mark if all correct and at most 1 incorrect.
(d)	2,23	2	B 2	B1 for 2 or 23; if more than 2 given, - 1 for each incorrect value
				Total 7 marks

Q2.

Question	Working	Answer	Mark	Notes					
(a)	167.4 - 155 (= 12.4)			M1	167.4 ÷ 155 (= 1.08)	167.4 ÷ 155 (= 1.08)			
	"12.4" ÷ 155 (= 0.08)			M1 dep	"1.08" – 1 (= 0.08)	"1.08" × 100 (= 108)			
		8		A1 cao					
			3	If build up approach used, award M2A1 for correct answer, otherwise M0A0.					
(b)	$\frac{125.4}{104.5}$ × 100 oe			M2 M or	1 for $\frac{125.4}{104.5}$ (= 1.2) or 10 1.045x = 125.4 oe or 1.2	04.5% = 125.4 2 seen or 5.4			
		120	3	A1					
				If build up answer, oth	approach used, award M erwise M0A0.	I2A1 for correct			
						Total 6 marks			

Q3.	
-----	--

Question	Working	Answer	Mark	Notes
	35÷ (3+2) or 35÷5 or $\frac{2}{5}$ ×35			^{M1} allow $\frac{3}{5} \times 35$ (=21)
	7×2	14	2	A1 NB 14 : 21 on answer line scores M1 A0 unless 14 identified
				Total 2 marks

Q4.

Question Number	Working	Answer	Mark	Notes
	$36 - 6\sqrt{8} - 6\sqrt{8} + 8$ or $36 - 12\sqrt{8} + 8$ $44 - 12\sqrt{4 \times 2}$ $44 - 12\sqrt{4 \times \sqrt{2}}$	44 244/2*	2	M2 M1 for $6^2 + (\sqrt{8})^2$ or $36 + 8$ or $6^2 + \sqrt{64}$ or $-12\sqrt{8}$ or $-6\sqrt{8} - 6\sqrt{8}$
		44 - 24 12	3	M1 for $(-)12\sqrt{8} = (-)12 \times 2\sqrt{2}$ or $\sqrt{8} = 2\sqrt{2}$ or $6\sqrt{8} = 6 \times 2\sqrt{2}$ Must see $\sqrt{8}$ stated as $2\sqrt{2}$ for final M1
	LHS = $(6 - 2\sqrt{2})^2$ or $\sqrt{8} = 2\sqrt{2}$ $6^2 - 12\sqrt{2} - 12\sqrt{2} + 4$ x 2 or $36 - 24\sqrt{2} + 8$			Alt: M1 M2 M1 for 6 ² + 4 x 2 or 36 + 8
				Total 3 marks

Q5.

Ques	Working	Answer	Mark	Notes
		A x = 3	3	B1
		By = -2		B1
		C y = -x		B1
				Total 3 marks

Q6.

Question	Working	Answer	Mark	Notes
	eg. $-22 = 5 \times p - 4 \times -5$			M1 for correct substitution
	or $5p = -22 + 4 \times -5$			(must be into a correct equation)
	eg. $-22 = 5p + 20$ or			M1 for correct
	5p = -22 - 20 or			simplification
	$p = \frac{-22 - 20}{5}$			(minimum of $-4 \times -5 = +20$)
		-8.4 oe	2	A1 (accept $-\frac{42}{5}$ or $-8\frac{2}{5}$ oe)
				Total 3 marks

Q7.

Q	Working	Answer	Mark		Notes
	Eg $9y = 36$ or $9x = 27$ or $5(7 - x) - 4x = 8$ or 5y - 4(7 - y) = 8		3	M1	For a correct method to find an equation in x or y . Condone 1 arithmetic error.
		x = 3, y = 4	,	A2	Dep on M1 A1 for each value
					Total 3 marks

Q8.

Q	Working	Answer	Mark	Notes	
	$\frac{2(6x+1) = 3(5x-2) \text{ or}}{\frac{2(6x+1)}{(5x-2)(6x+1)}} = \frac{3(5x-2)}{(5x-2)(6x+1)}$		4	M1 Need to see both expressions in an equation May be implied by second M1; NB: Denominators	
				must be correct	
	$\frac{12x + 2 = 15x - 6 \text{ or}}{(5x - 2)(6x + 1)} = \frac{15x - 6}{(5x - 2)(6x + 1)}$			M1 Need to see both expressions in an equation NB: Denominators must be correct	
	3x = 8 or -3x = -8 or 3x = 2 + 6 or -3x = -6 - 2 or $15x - 12x = 8$ or $12x - 15x = -8 \text{ or}$ 3x - 8 = 0	2 ² / ₃ oe		M1 dep on awarding first two method marks for correct rearrangement with x terms on one side and numbers on the other AND correct collection of terms on at least one side or for $3x - 8 = 0$ A1 for $2\frac{2}{3}$ oe including	
				decimal equivalent rounded or truncated to at least 2 decimal places Award 4 marks if first two method marks scored and answer correct.	
				Total 4 marks	

Q9.

The correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
	$(2x \pm 3)(3x \pm 5)$		4	M1
	3(2x-3)(2x+3) or			M2
	(2x-3)(6x+9)			
				(M1 for $3(4x^2 - 9)$ or
				(6x-9)(2x+3))
		$\frac{3x+5}{3(2x+3)}$		A1 accept $\frac{3x+5}{6x+9}$
		~ /		Total 4 marks

Q10.

Question	Working	Answer	Mark	Notes
	π x 7.5 ² x 26	4590	3	M2 M1 for π x 15 ² x 26 or 18369 → 18386 inc A1 (4594.579) accept answers 4592 → 4597 inc
				Total 3 marks

Q11.

The correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Marks		Comments
	$\cos 39 = \frac{11.3}{x} \text{ oe}$		2	M1	or $\frac{x}{\sin 90} = \frac{11.3}{\sin(180 - 90 - 39)}$
	$(x=) \frac{11.3}{\cos 39}$		3	M1	or $x = \frac{11.3}{\sin(180 - 90 - 39)} \times \sin 90$
		14.54		A1	awrt 14.54
	Alternative				
	$\tan 39 = \frac{y}{11.3}; y = 9.15$ "9.15" ² + 11.3 ² = x ² oe			M1	Must get to correct Pythagoras statement
	$(x=)\sqrt{"9,15"^2+11.3^2}$ oe			M1	
		14.54		A1	awrt 14.54 (NB: 14.5 with no working gains M0A0)
					Total 3 marks

Q	Working	Answer	Mark		Notes	
	$\frac{x}{360} \times \pi \times r^2 = 5\pi$		б	M1	for this mark only condone an inc	orrect value for r
	x = 50			A1	cao for angle $AOB = 50$	
	$(AB^2 =) 6^2 + 6^2 - 2 \times 6 \times 6 \times \cos("50")$			M1	dep on first M1 or 6×sin("50"/2)	M2 for $(AB =)$
	$(AB =) \sqrt{25.7}$ or 5.07			M1	dep or 2× 6×sin("50"/2)	√25.7 or 5.07or 2× 6×sin"50"/2
	$\frac{50''}{360} \times 2 \times \pi \times 6 \text{ or}$ $\frac{5\pi \times 2\pi \times 6}{\pi \times 6^2} \text{ or } \frac{5}{3}\pi \text{ or } 5.23$			M1	dep on first M1 if "50" used but indep if angle not used	
		10.3		A1	for answer in range 10.2 - 10.31	
						Total 6 marks

Q13.

Question	Working	Answer	Mark	Notes
	$(\cos x^{\circ} =) \frac{4^{2} + 6^{2} - 8^{2}}{2 \times 4 \times 6}$ or 8 ² = 4 ² + 6 ² - 2 × 4 × 6 cos x ^o		3	M1 for correct substitution in Cosine Rule
55 20	(cos x° =) −0.25 oe			A1
		104.5		A1 for value rounding to 104.5 (104.4775)
				Total 3 marks

Q14.

Q12.

Question Number	Working	Answer	Mark	Notes
	$(12 \times 18) + (8 \times 12) + (8 \times 12)$			M2 M1 for 12 x 18 (=216) or 8 x 16.5
	16.5) (=348)	1000000		(=132)
	"348"÷20	17.4	4	M1 dep on at least 1 previous M1
				A1 17.4
				Alt Ratio method
				M1: 12:8=3:2 or 6:4
				M1: 18 x3 and 16.5 x 2 or 18 x 6
				and 16.5 x 4
				M1: (18 x 3 + 16.5 x 2) ÷ 5 or (18 x 6
				+ 16.5 x 4) ÷ 10
				A1: 17.4
				Alt Proportion method
				M1 60 % boys and 40% girls stated or
				implied
				M2 (0.6 x 18) + (0.4 x 16.5) (= 10.8 +
				6.6)
				M1 for 0.6 x 18 or 0.4 x 16.5
				A1 17.4
				SC B1 for 17.1 (from {(8 x 18) + (12 x
				16.5)}÷20)
				Total 4 marks

Question	Working	Answer	Mark	Notes		
(a)(i)		1	4	B 1	Also accept $\frac{1}{1}$, $\frac{8}{8}$,	100%
(ii)		1 8		B1		
(iii)		$\frac{2}{8}$ or $\frac{1}{4}$		M1 A1	for denominator of 8 for numerator of 2	SC B2 for $\frac{1}{4}$
(b)	$\frac{3}{8} + \frac{2}{8}$ oe		2	M1		1
		<u>5</u> 8		A1		
					Total	6 marks